1. If the denominator of a fraction is a square root, rationalize the denominator by multiplying the numerator and denominator by same appropriate square root that makes a perfect square radicand in the denominator.

2. If the denominator of a fraction is a cube root, rationalize the denominator by multiplying the numerator and denominator by the cube root that makes a perfect cube radicand in the denominator.

3. If the denominator of a fraction contains two terms with square roots, multiply the numerator and denominator by the conjugate of the denominator.

**Examples:** 1. $\frac{x}{\sqrt{5}}$ = $\frac{x\sqrt{5}}{\sqrt{5}\sqrt{5}}$ = $\frac{x\sqrt{5}}{5}$

2. $\frac{2}{\sqrt[3]{25}}$ = $\frac{2}{\sqrt[3]{25}}$ . $\frac{\sqrt[3]{5}}{\sqrt[3]{5}}$ = $\frac{2\sqrt[3]{5}}{5}$

3. $\frac{x}{\sqrt{x}-2}$ = $\frac{x(\sqrt{x}+2)}{(\sqrt{x}-2)(\sqrt{x}+2)}$ = $\frac{x(\sqrt{x}+2)}{x-4}$