A prism is a solid figure with a uniform cross section. The surface area of any prism equals the sum of the areas of its faces, which include the top, bottom and sides of the prism. Because the top and the bottom of a prism have the same shape. The actual formula used to find the surface area will depend on the shape of the base of the prism.

The surface area of a prism = Lateral surface area + 2 × area of base

**Steps for finding the Surface Area of a Prism:**

Step 1: Find the lateral surface area of the prism.

Step 2: Find the area of the base of the prism.

Step 3: Multiply the result of step 2 with 2.

Step 4: Add the results of step 1 and step 2.

Step 5: Write answer in the proper square unit of measurement.

**Example: **

What is the surface area of a prism whose ends have an area of 15 in^{2} and its lateral area is 12 in^{2}.

Solution:

Step 1:

Area of one end of prism = 15 in^{2}

Lateral surface area of the prism = 12 in^{2}

Step 2:

The surface area of a prism = Lateral surface area + 2 × area of base

=> SA = 12 + 2 x 15

= 12 + 30

= 42

Hence the surface area of the prism is 42 in^{2} .