**• Radius** - Radius of Circumcircle can be expressed as follows:

$r$ = $\frac{pqr}{\sqrt{(p^{2} + q^{2} + r^{2}) -2 (p^{4} + q^{4} + r^{4}})}$

$r$ = $\frac{pqr}{4A}$

Where, A is the area of the triangle

$r$ = $\frac{p}{2SinP}$ = $\frac{q}{2SinQ}$ = $\frac{r}{2SinR}$

Where, p, q and r are the sides of the triangle

P, Q and R are the three angles of the triangle

**• Diameter** - Diameter of Circumcircle satisfies the Sine Rule

$D$ = $\frac{p}{SinP}$ = $\frac{q}{SinQ}$ = $\frac{r}{SinR}$

$D$ = $\frac{pqr}{2A_{T}}$

$A_{T}$ = $Area\ of\ triangle$ = $\sqrt{s(s-p)(s-q)(s-r)}$

$s$ = $Semi\ perimeter$ = $\frac{(p+q+r)}{2}$

**• Area** - Area of Circumcircle can be expressed as follows:

$A$ = $\frac{p^{2} q^{2} r^{2}}{(p^{2} + q^{2} + r^{2})\ -2\ (p^{4} + q^{4} + r^{4})}$

$A_{C}$ = $\frac{p^{2} q^{2} r^{2} \pi}{16A_{T}^{2}}$

Where, $A_{T}$ = $\frac{pqSinR}{2}$ = $\frac{qrSinP}{2}$ = $\frac{rpSinQ}{2}$