Subtraction is only possible if the literal coefficients are the same.

The operation performed is

$A x^{b} - B x^{b}$ = $(A-B) x^{b}$

- The difference of two or more monomials is again a monomial.
- The difference of non-similar monomials is a polynomial.

For example,

$5 a b^{2} -7 a b^{2}$ = $(5-7) a b^{2}$ = $-2 a b^{2}$

$x y + 6 a^{2} b$ (Here, the difference of two monomials is a binomial.)

### Examples on Subtracting Monomials

Given below are some examples that explain how to subtract monomials

**Example 1:** Subtracting monomials: $16 a^{2} b^{3} c - 7 a^{2} b^{3} c$

**Solution:** Given $16 a^{2} b^{3} c - 7 a^{2} b^{3} c$

**Step 1:** We subtract the like terms first $(16 - 7)$ and variables $a^{2} b^{3} c$ remain the same.

$(16 - 7) a^{2} b^{3} c$

**Step 2:** After subtraction we get $ 9 a^{2} b^{3} c$

**Answer:** $ 9 a^{2} b^{3} c$

**Example 2:**

Subtracting monomials: $ 28 q - 12 q$

**Solution:**

Given $ 28 q - 12 q$

**Step 1:** We subtract like terms first $(28 - 12)$ and the variable q remains same.

$(28 - 12) q$

**Step 2:** After subtraction we get $ 16 q$

**Answer:** $16 q$