We usually simplify math expressions to get a normal result. If the expression contains a parenthesis, we often use the

distributive property rule to remove these parenthesis and for combining similar terms.

### Examples on Simplifying Math Expressions

Some examples on simplifying math expressions.

**Example 1:** Simplify expression $3x + 6 + 4x - 2$

**Solution:** Given $3x + 6 + 4x - 2$

$3x + 6 + 4x - 2$ = $3x + 4x + 6 - 2$ (Commutative property)

= $(3x + 4x) + (6 - 2)$ (Associative property)

= $(3 + 4) x + (6 - 2)$ (Distributive property)

= $7x + 4$ (Combining like terms)

**Answer:** $7x + 4$

**Example 2:** Simplify the expression $2(x - 4) + (3 - 5x)$

**Solution:** Given $2(x - 4) + (3 - 5x)$

$2(x - 4) + (3 - 5x)$ = $2x - 8 + 3 - 5x$ (Distributive property)

= $2x - 5x - 8 + 3$ (Combining like terms)

= $- 3x - 5$

**Answer: **$- 3x - 5$

**Example 3: **

Simplify the expression $5x - 8 + x - 1$

**Solution:**$5x - 8 + x - 1$ = $5x + x - 8 - 1$ (Combining like terms)

= $6x - 9$

**Answer:** $6x - 9$

**Example 4:**Simplify the expression $3(x - 2) + 6$

**Solution:**$3(x - 2) + 6$ = $3x - 6 + 6$ (Distributive property)

= $3x$ (Combining like terms)

**Answer: **$3x$